Name: Marks:

3.51 Integration by Substitution

Learning Objectives

Students should be able to:

Checklist Core material

Extend the idea of 'reverse differentiation' to include the integration of e^{ax+b} ,
$\frac{1}{ax+b}$, $sin(ax+b)$, $cos(ax+b)$ and $sec^2(ax+b)$ and $\frac{1}{x^2+a^2}$.
e.g. Including examples such as $\frac{1}{3x^2+2}$

Use trigonometrical relationships in carrying out integration e.g. use of double-angle formulae to integrate $\sin^2 x$ or $\cos^2 (2x)$

recognise an integrand of the form $\frac{kf'(x)}{f(x)}$, and such functions e.g. integration of $\frac{x}{x^2+1}$ or tan x

Use a given substitution to simplify and evaluate either a definite or an indefinite integral

e.g. to integrate $\sin^2 2x \cos x$ using the substitution $u = \sin x$

- 1 (i) By first expanding $\sin(2x + x)$, show that $\sin 3x = 3\sin x 4\sin^3 x$. [4]
 - (ii) Hence, showing all necessary working, find the exact value of $\int_0^{\frac{1}{3}\pi} \sin^3 x \, dx$. [4]
- Let $I = \int_{\frac{1}{4}}^{\frac{3}{4}} \sqrt{\left(\frac{x}{1-x}\right)} dx$.
 - (i) Using the substitution $x = \cos^2 \theta$, show that $I = \int_{\frac{1}{2}\pi}^{\frac{1}{3}\pi} 2\cos^2 \theta \, d\theta$. [4]
 - (ii) Hence find the exact value of I. [4]
- 3 (i) Show that $\frac{2\sin x \sin 2x}{1 \cos 2x} \equiv \frac{\sin x}{1 + \cos x}.$ [4]
 - (ii) Hence, showing all necessary working, find $\int_{\frac{1}{3}\pi}^{\frac{1}{2}\pi} \frac{2\sin x \sin 2x}{1 \cos 2x} \, dx$, giving your answer in the form $\ln k$.
- 4 (i) Using the expansions of cos(3x + x) and cos(3x x), show that

$$\frac{1}{2}(\cos 4x + \cos 2x) \equiv \cos 3x \cos x.$$
 [3]

- (ii) Hence show that $\int_{-\frac{1}{6}\pi}^{\frac{1}{6}\pi} \cos 3x \cos x \, dx = \frac{3}{8}\sqrt{3}.$ [3]
- 5 It is given that $x = \ln(1 y) \ln y$, where 0 < y < 1.

(i) Show that
$$y = \frac{e^{-x}}{1 + e^{-x}}$$
. [2]

(ii) Hence show that
$$\int_0^1 y \, dx = \ln\left(\frac{2e}{e+1}\right)$$
. [4]

- (i) Prove that if $y = \frac{1}{\cos \theta}$ then $\frac{dy}{d\theta} = \sec \theta \tan \theta$. [2]
 - (ii) Prove the identity $\frac{1+\sin\theta}{1-\sin\theta} = 2\sec^2\theta + 2\sec\theta\tan\theta 1$. [3]
 - (iii) Hence find the exact value of $\int_0^{\frac{1}{4}\pi} \frac{1 + \sin \theta}{1 \sin \theta} \, d\theta.$ [4]

- 7 (i) Prove the identity $\tan 2\theta \tan \theta = \tan \theta \sec 2\theta$. [4]
 - (ii) Hence show that $\int_0^{\frac{1}{6}\pi} \tan \theta \sec 2\theta \, d\theta = \frac{1}{2} \ln \frac{3}{2}.$ [4]
- 8 Let $I = \int_{1}^{4} \frac{(\sqrt{x}) 1}{2(x + \sqrt{x})} dx$.
 - (i) Using the substitution $u = \sqrt{x}$, show that $I = \int_{1}^{2} \frac{u-1}{u+1} du$. [3]
 - (ii) Hence show that $I = 1 + \ln \frac{4}{9}$. [6]
- 9 Let $I = \int_0^1 \frac{x^5}{(1+x^2)^3} dx$.
 - (i) Using the substitution $u = 1 + x^2$, show that $I = \int_1^2 \frac{(u-1)^2}{2u^3} du$. [3]
 - (ii) Hence find the exact value of I. [5]
- 10 Let $I = \int_0^1 \frac{9}{(3+x^2)^2} dx$.
 - (i) Using the substitution $x = (\sqrt{3}) \tan \theta$, show that $I = \sqrt{3} \int_0^{\frac{1}{6}\pi} \cos^2 \theta \, d\theta$. [3]
 - (ii) Hence find the exact value of I. [4]
- Use the substitution $u = 4 3\cos x$ to find the exact value of $\int_0^{\frac{1}{2}\pi} \frac{9\sin 2x}{\sqrt{(4 3\cos x)}} dx.$ [8]
- 12 **(a)** Find $\int (4 + \tan^2 2x) dx$. [3]
 - **(b)** Find the exact value of $\int_{\frac{1}{4}\pi}^{\frac{1}{2}\pi} \frac{\sin(x + \frac{1}{6}\pi)}{\sin x} dx.$ [5]

Let $I = \int_0^1 \frac{\sqrt{x}}{2 - \sqrt{x}} dx$.

(i) Using the substitution
$$u = 2 - \sqrt{x}$$
, show that $I = \int_{1}^{2} \frac{2(2-u)^2}{u} du$. [4]

(ii) Hence show that
$$I = 8 \ln 2 - 5$$
. [4]

By first using the substitution $u = e^x$, show that

$$\int_0^{\ln 4} \frac{e^{2x}}{e^{2x} + 3e^x + 2} dx = \ln\left(\frac{8}{5}\right).$$
 [10]

Use the substitution $u = 1 + 3 \tan x$ to find the exact value of

$$\int_{0}^{\frac{1}{4}\pi} \frac{\sqrt{(1+3\tan x)}}{\cos^2 x} \, \mathrm{d}x.$$
 [5]

16 (i) Prove that $\cot \theta + \tan \theta = 2 \csc 2\theta$. [3]

(ii) Hence show that
$$\int_{\frac{1}{6}\pi}^{\frac{1}{3}\pi} \csc 2\theta \, d\theta = \frac{1}{2} \ln 3.$$
 [4]

Use the substitution
$$u = 3x + 1$$
 to find $\int \frac{3x}{3x + 1} dx$. [4]

Use the substitution
$$u = \sin 4x$$
 to find the exact value of
$$\int_0^{\frac{1}{24}\pi} \cos^3 4x \, dx.$$
 [5]

19 Express $4\cos\theta + 3\sin\theta$ in the form $R\cos(\theta - \alpha)$, where R > 0 and $0 < \alpha < \frac{1}{2}\pi$.

Hence find
$$\int \frac{50}{(4\cos\theta + 3\sin\theta)^2} \, d\theta.$$
 [3]

- (i) By differentiating $\frac{1}{\cos x}$, show that the derivative of $\sec x$ is $\sec x \tan x$. Hence show that if $y = \ln(\sec x + \tan x)$ then $\frac{dy}{dx} = \sec x$. [4]
 - (ii) Using the substitution $x = (\sqrt{3}) \tan \theta$, find the exact value of

$$\int_1^3 \frac{1}{\sqrt{3+x^2}} \, \mathrm{d}x,$$

expressing your answer as a single logarithm.

[4]

21 (i) Express $(\sqrt{3})\cos x + \sin x$ in the form $R\cos(x - \alpha)$, where R > 0 and $0 < \alpha < \frac{1}{2}\pi$, giving the exact values of R and α .

(ii) Hence show that

$$\int_{\frac{1}{6}\pi}^{\frac{1}{2}\pi} \frac{1}{\left((\sqrt{3})\cos x + \sin x\right)^2} \, \mathrm{d}x = \frac{1}{4}\sqrt{3}.$$
 [4]

(i) By differentiating $\frac{1}{\cos x}$, show that if $y = \sec x$ then $\frac{dy}{dx} = \sec x \tan x$. [2]

(ii) Show that
$$\frac{1}{\sec x - \tan x} = \sec x + \tan x$$
. [1]

(iii) Deduce that
$$\frac{1}{(\sec x - \tan x)^2} \equiv 2\sec^2 x - 1 + 2\sec x \tan x.$$
 [2]

(iv) Hence show that
$$\int_0^{\frac{1}{4}\pi} \frac{1}{(\sec x - \tan x)^2} dx = \frac{1}{4} (8\sqrt{2} - \pi).$$
 [3]

23 (i) Use the substitution $u = \tan x$ to show that, for $n \neq -1$,

$$\int_0^{\frac{1}{4}\pi} (\tan^{n+2} x + \tan^n x) \, \mathrm{d}x = \frac{1}{n+1}.$$
 [4]

(ii) Hence find the exact value of

(a)
$$\int_0^{\frac{1}{4}\pi} (\sec^4 x - \sec^2 x) \, dx$$
, [3]

(b)
$$\int_0^{\frac{1}{4}\pi} (\tan^9 x + 5 \tan^7 x + 5 \tan^5 x + \tan^3 x) \, dx.$$
 [3]

24 (i) Prove the identity $\cos 4\theta + 4\cos 2\theta \equiv 8\cos^4 \theta - 3$. [4]

(ii) Hence

(a) solve the equation
$$\cos 4\theta + 4\cos 2\theta = 1$$
 for $-\frac{1}{2}\pi \le \theta \le \frac{1}{2}\pi$, [3]

(b) find the exact value of
$$\int_0^{\frac{1}{4}\pi} \cos^4 \theta \, d\theta$$
. [3]

Let $I = \int_{0}^{1} \frac{x^2}{\sqrt{4-x^2}} dx$.

(i) Using the substitution $x = 2 \sin \theta$, show that

$$I = \int_0^{\frac{1}{6}\pi} 4\sin^2\theta \, d\theta.$$
 [3]

(ii) Hence find the exact value of I. [4]

Nos	Questions	References
26	It is given that $f(x) = 4\cos^2 3x$.	
	(i) Find the exact value of $f'(\frac{1}{9}\pi)$.	[3]
	(ii) Find $\int f(x) dx$.	[3]
27	(i) Using the expansions of $cos(3x - x)$ and $cos(3x + x)$, prove that	
	$\frac{1}{2}(\cos 2x - \cos 4x) \equiv \sin 3x \sin x.$	[3]
	(ii) Hence show that	

(ii) Hence show that

$$\int_{\frac{1}{6}\pi}^{\frac{1}{3}\pi} \sin 3x \sin x \, dx = \frac{1}{8}\sqrt{3}.$$
 [3]

- (i) Prove the identity $\cos 3\theta = 4\cos^3 \theta 3\cos \theta$. 28 [4]
 - (ii) Using this result, find the exact value of

$$\int_{\frac{1}{4}\pi}^{\frac{1}{2}\pi}\cos^3\theta\,\mathrm{d}\theta.$$
 [4]

- 29 (i) Prove the identity $\cos 4\theta - 4\cos 2\theta + 3 \equiv 8\sin^4 \theta$. [4]
 - (ii) Using this result find, in simplified form, the exact value of

$$\int_{\frac{1}{6}\pi}^{\frac{1}{3}\pi} \sin^4\theta \, \mathrm{d}\theta. \tag{4}$$

(i) Use the substitution $x = 2 \tan \theta$ to show that 30

$$\int_0^2 \frac{8}{(4+x^2)^2} \, \mathrm{d}x = \int_0^{\frac{1}{4}\pi} \cos^2 \theta \, \mathrm{d}\theta.$$
 [4]

(ii) Hence find the exact value of

$$\int_0^2 \frac{8}{(4+x^2)^2} \, \mathrm{d}x. \tag{4}$$

31 Find the exact value of the constant k for which $\int_{1}^{k} \frac{1}{2x-1} dx = 1.$ [4]

32 (i) Express $\cos \theta + (\sqrt{3}) \sin \theta$ in the form $R \cos(\theta - \alpha)$, where R > 0 and $0 < \alpha < \frac{1}{2}\pi$, giving the exact values of R and α .

(ii) Hence show that
$$\int_0^{\frac{1}{2}\pi} \frac{1}{\left(\cos\theta + (\sqrt{3})\sin\theta\right)^2} d\theta = \frac{1}{\sqrt{3}}.$$
 [4]

33 (i) Use the substitution $x = \sin^2 \theta$ to show that

$$\int \sqrt{\left(\frac{x}{1-x}\right)} \, \mathrm{d}x = \int 2\sin^2\theta \, \mathrm{d}\theta.$$
 [4]

(ii) Hence find the exact value of

$$\int_0^{\frac{1}{4}} \sqrt{\left(\frac{x}{1-x}\right)} \, \mathrm{d}x. \tag{4}$$

34 (i) Use the substitution $x = \tan \theta$ to show that

$$\int \frac{1-x^2}{(1+x^2)^2} dx = \int \cos 2\theta d\theta.$$
 [4]

(ii) Hence find the value of

$$\int_0^1 \frac{1 - x^2}{(1 + x^2)^2} \, \mathrm{d}x. \tag{3}$$

35 (i) Prove the identity

$$\sin^2\theta\cos^2\theta \equiv \frac{1}{8}(1-\cos 4\theta).$$
 [3]

(ii) Hence find the exact value of

$$\int_0^{\frac{1}{3}\pi} \sin^2\theta \cos^2\theta \, d\theta. \tag{3}$$

36 (i) Prove the identity

$$\cot x - \cot 2x \equiv \csc 2x.$$
 [3]

(ii) Show that
$$\int_{\frac{1}{\epsilon}\pi}^{\frac{1}{4}\pi} \cot x \, dx = \frac{1}{2} \ln 2.$$
 [3]

(iii) Find the exact value of
$$\int_{\frac{1}{4}\pi}^{\frac{1}{4}\pi} \csc 2x \, dx$$
, giving your answer in the form $a \ln b$. [4]

SMART Tutor Learning Mine® Specific, Motivating, Achievable, Results-oriented, Trackable

No	os	Answers	N	os		Answers
1 (ii))	<u>5</u> 24	24	(ii)	(a)	0.572, -0.572
2 (ii))	$\frac{\pi}{6}$			(b)	$\frac{3\pi}{32}+\frac{1}{4}$
3 (ii))	$\ln\left(\frac{3}{2}\right)$	25	(ii)		$\frac{\pi}{3} - \frac{\sqrt{3}}{2}$
6 (iii))	$2\sqrt{2}-\frac{\pi}{6}$	26	(i) (ii)		$-6\sqrt{3}$
9 (ii))	$\frac{1}{2}ln2-\frac{5}{16}$	28	(ii)		$2x + \frac{1}{3}\sin 6x + c$ $\frac{2}{3} - \frac{3\sqrt{3}}{8}$
10 (ii))	$\frac{\sqrt{3}}{12}\pi + \frac{3}{8}$	29	(ii)		$\frac{\pi}{3} - \frac{8}{8}$ $\frac{\pi}{16} - \frac{\sqrt{3}}{32}$
11		<u>20</u> <u>3</u>	30	(ii)		
12 (a))	$3x + \frac{1}{2}\tan 2x + c$	31	, ,		$\frac{\pi}{8} + \frac{1}{4}$ $\frac{1}{2}(e^2 + 1)$
(b)	1	$\frac{\sqrt{3}}{8}\pi - \frac{1}{2}\ln\frac{1}{\sqrt{2}}$	32	(i)		$\frac{1}{2}(e^{-\frac{1}{2}})$ $R = 2$
15		<u>14</u> 9				$\alpha = \frac{\pi}{6}$
17		$\frac{1}{3}(3x+1) - \frac{1}{3}\ln(3x+1) + c$	33	(ii)		$\frac{\pi}{6} - \frac{\sqrt{3}}{4}$
18		<u>11</u> <u>96</u>	34	(ii)		$\frac{1}{2}$
19		2 tan(θ – 0.6435)	35	(ii)		$\frac{1}{8} \left(\frac{\pi}{3} + \frac{\sqrt{3}}{8} \right)$
20 (ii))	$\ln(\frac{2+\sqrt{3}}{\sqrt{3}})$	36	(iii)		$\frac{1}{4}$ ln 3
21 (i)		$R = 2$ $\alpha = \frac{\pi}{6}$				4
23 (ii)	(a)	$\frac{1}{3}$				
	(b)	25 24				