NAME: DATE: MARKS:

Quadratic Equations by completing square

Learning Objectives

Students should be able to:

- (a) Derive and solve quadratic equations by completing the square
- (b) Find turning points of quadratics by completing the square.

- 1 (a) Express $x^2 6x + 2$ in the form $(x a)^2 + b$.
 - (b) Sketch the graph of $y = x^2 6x + 2$, showing clearly the coordinates of the turning point.

- 2 (a) Express $y = x^2 + 3x + 2$ in the form of $y = (x + p)^2 q$.
 - (b) Sketch the graph of $y = x^2 + 3x + 2$, indicating clearly its intercepts with the axes and the turning point.

- 3 (a) Express $x^2 8x 29$ in the form $(x a)^2 b$.
 - (b) Hence, solve the equation $x^2 8x 29 = 0$, giving your answers correct to 2 decimal places.
- 4 (a) Express $x^2 3x 5$ in the form $(x a)^2 b$.
 - (b) Hence, solve the equation $x^2 3x 5 = 0$, giving your answers correct to 2 decimal places.
- 5 (a) Sketch the graph of $y = 2 (x + 3)^2$.

- (b) Write down the equation of the line of symmetry of $y = 2 (x + 3)^2$.
- (c) Sketch the graph of y = (x + 3)(x 1).

The figure below shows a quadratic graph $y = x^2 + 7x + 10$. The graph cuts the x - axis at point A and the y - axis at point B.

- (a) Find the coordinates of A and B.
- (b) State the minimum point of the graph.
- 7 (a) Express $y = -x^2 + 4x + 5$ in the form $(x h)^2 + k$.
 - (b) Sketch the graph of $y = -x^2 + 4x + 5$, showing the intercepts with the axes clearly.

(c) Write down the equation of the line of symmetry of $y = -x^2 + 4x + 5$.

8 (a) Sketch the graph of $y = 5 - (x + 2)^2$. Label the y – intercept clearly.

- (b) Write down the coordinates of the maximum point of the curve of $y = 5 (x + 2)^2$.
- 9 The area of a rectangle, A cm², is given by $A = x^2 4x + 7$.
 - (a) Express $y = x^2 4x + 7$ in the form $(x a)^2 + b$.
 - (b) State the minimum area of the rectangle.
 - (c) Sketch the graph of $A = x^2 4x + 7$ on the axes below, clearly stating the turning point and the vertical intercept.

- 10 (a) Express $x^2 4x 1$ in the form $(x a)^2 b$.
 - (b) Hence, solve the equation $x^2 4x 1 = 0$, giving your answers correct to 2 decimal places.
- 11 (a) Express $x^2 6x 1$ in the form $(x p)^2 + q$.
 - (b) Hence, solve the equation $x^2 6x 1 = 0$, giving your answers correct to 2 decimal places.
- 12 (a) Express $x^2 5x 8$ in the form $(x + a)^2 + b$.
 - (b) Hence, solve the equation $x^2 5x 8 = 0$, giving your answers correct to 2 decimal places.
- The curve $y = 6 x 2x^2$ cuts the x axis at points A and B and the y axis at C. It has a maximum turning point at D.

- (a) Calculate the coordinates of A, B and C.
- (b) Hence, or otherwise,
 - (i) write down the equation of the line of symmetry,
 - (ii) find the maximum value of y.

Sketch the graph of $y = -(2 - x)^2 + 1$ on the axes below. Indicate clearly the values where the graph crosses the x - and y - axes and the coordinates of any turning points.

Sketch the graph of y = (x + 2)(4 - x) on the axes below. Indicate clearly the x – intercepts, y – intercept and the coordinates of the turning points.

Nos Questions Reference

16 (a) Express $x^2 - \frac{1}{4}x$ in the form $(x - b)^2 + c$.

(b) Sketch the graph of $y = \frac{1}{4}x - x^2$

- (c) Find the coordinates of the maximum point of $y = \frac{1}{4}x x^2$
- 17 The graph of $y = 4 (x + 2)^2$ is shown below.

- (a) State the coordinates of the maximum point P.
- (b) State the coordinates of the point Q where the graph cuts the x axis.
- (c) Write down the equation of the line of symmetry of the graph.
- (d) State the largest value of a such that $4-(x+2)^2 = a$ has real solutions.

- 18 (a) Express the function $y = -x^2 + 8x 5$ in the form $y = -(x h)^2 + k$.
 - (b) Sketch the graph of $y = -x^2 + 8x 5$. Label the y intercept and turning point.

- (c) Hence, or otherwise, solve the equation $-x^2 + 8x 5 = -10$.
- 19 (a) Express $-x^2 5x 6$ in the form -(x + a)(x + b), where a and b are constants.
 - (b) Hence, Sketch the curve of $y = -x^2 5x 6$, indicating clearly the intercepts and turning point.

- The equation of a curve is $y = x^2 + bx + c$ where b and c are constants.
 - (a) Given that (2, 0) is a point on the curve, show that $b = -\frac{4+c}{2}$.
 - (b) If the y intercept of the curve is 14, find the values of b and c.
- 21 Express $-8x 11 + x^2$ in the form $(x + p)^2 + q$.
- 22 (a) (-5, 2) the maximum point of a quadratic curve. Write the equation of the graph in the form $y = p - (x + p)^2$.
 - (b) A straight line on the xy axes passes through (-5, 2) and cuts the x axis at x = 1. Find the equation of the straight line.
- The curve cuts the x axis at 5 and 1 and the y axis at A. B is the minimum point on the curve. Express the equation of the curve in the form of $y = a(x + h)^2 18$, where a and h are constants.

Nos

$(x-3)^2 - 7$ 1 (a)

Nos

Questions

2 (a)
$$(x+\frac{3}{2})^2-\frac{1}{4}$$

3 (a)
$$(x-4)^2-45$$

(b)
$$10.708 \text{ or } -2.708$$

4 (a)
$$(x-\frac{3}{2})^2-\frac{29}{4}$$

5 (a)

(b)
$$x = -3$$

6 (a)
$$A = (-5, 0)$$

 $B = (0, 10)$

(b) Minimum point =
$$\left(-\frac{7}{2}, -\frac{9}{4}\right)$$

$-(x-2)^2+9$ 7 (a)

Questions

(c)
$$x = 2$$

9 (a)
$$(x-2)^2+3$$

(b) Minimum area =
$$3 \text{ cm}^2$$

(c)

10 (a)
$$(x-2)^2-5$$

11 (a)
$$(x-3)^2-10$$

12 (a)
$$(x-\frac{5}{2})^2-\frac{57}{4}$$

(b)
$$6.27 \text{ or } -1.27$$

Questions Questions Nos Nos

13 (a) A = (-2, 0) $B = (1\frac{1}{2}, 0)$ C = (0, 6)

(b)
$$x = -\frac{1}{x^2}$$

(ii) Max y =
$$6\frac{1}{8}$$

14

15

 $(x-\frac{1}{8})^2-\frac{1}{64}$ 16 (a)

(b)

P = (-2, 4)17 (a)

(b)
$$Q = (-4, 0)$$

(c)
$$x = -2$$

(d) a = 4

(c)

18 (a)
$$-(x-4)^2+11$$

8.58 or -0.583

19 (a)
$$-(x+3)(x+2)$$

(b)

(b) b = -9; c = 1420

 $(x-4)^2 - 27$ 21

(a) $2 - (x + 5)^2$ 22

(b) $y = \frac{1}{3}x - \frac{1}{3}$

 $2(x+2)^2-18$ 23